Head-Fi.org › Forums › Equipment Forums › Headphones (full-size) › sennheiser vs akg. ( HD650 or DT 990 or AKG Q701 or AKG 702 or AKG and any other AKG or headphones)
New Posts  All Forums:Forum Nav:

sennheiser vs akg. ( HD650 or DT 990 or AKG Q701 or AKG 702 or AKG and any other AKG or headphones) - Page 2

post #16 of 24
Thread Starter 

Is the Fiio E17 better then the Fiio E10 ?.

post #17 of 24
Quote:
Originally Posted by rei075 View Post

Is the Fiio E17 better then the Fiio E10 ?.
Yes.
post #18 of 24
Quote:
Originally Posted by rei075 View Post

Is the Fiio E17 better then the Fiio E10 ?.

 

17 - 10 = 7

 

The E17 is 7 times better than the E10.

post #19 of 24

Brilliant!

post #20 of 24
Quote:
Originally Posted by OperatorPerry View Post

 

17 - 10 = 7

 

The E17 is 7 times better than the E10.

 

Not quite:

 

17/10 = 1.7

 

So the E17 is only 1.7 times better.

post #21 of 24
Quote:
Originally Posted by KimLaroux View Post

 

Not quite:

 

17/10 = 1.7

 

So the E17 is only 1.7 times better.

 

No, that's not how Fiio product numbering works.  Fiio uses the Riemann zeta function to relate product performance and number.

 

On the real line with x>1, the Riemann zeta function can be defined by the integral

 

 

where Gamma(x) is the gamma function. If x is an integer n, then we have the identity

 

 

=

 

So,

 

 

 

To evaluate zeta(n), let y=ku so that dy=kdu and plug in the above identity to obtain

 

 =

 

 

Integrating the final expression in gives Gamma(n), which cancels the factor 1/Gamma(n) and gives the most common form of the Riemann zeta function,

 

 

 

which is sometimes known as the p-series.

 

 

 

The Riemann zeta function can also be defined in terms of multiple integrals by,

 

and as a Mellin transform by,

 

 

or 0<R[s]<1, where frac(x) is the fractional part.

 

 

 

The Riemann zeta function can also be defined in the complex plane by the contour integral

 

 

for all z!=1, where the contour is illustrated above.

 

 

 

The Riemann zeta function is related to the Dirichlet lambda function lambda(nu) and Dirichlet eta function eta(nu) by

 

 

and

 

 

 

 

 

It is also related to the Liouville function lambda(n) by

 

 

Furthermore,

 

 

where omega(n) is the number of distinct prime factors of n.

 

 

Perry


Edited by OperatorPerry - 3/21/13 at 7:19pm
post #22 of 24

^ LOL 

post #23 of 24

^^ lol

post #24 of 24
Quote:
Originally Posted by OperatorPerry View Post

No, that's not how Fiio product numbering works.  Fiio uses the Riemann zeta function to relate product performance and number.

On the real line 
with 
x>1
, the Riemann zeta function can be defined by the integral





where 
Gamma(x)
 is the gamma function
. If 
x
 is an 
i
nteger 
n
, then we have the identity




=






So,





To evaluate 
zeta(n)
, let 
y=ku
 so that 
dy=kdu
 and plug in the above identity to obtain



 =
 






Integrating the final expression in
 gives 
Gamma(n)
, which cancels the factor 
1/Gamma(n)
 and gives the most common form of the Riemann zeta function,






which is sometimes known as the p-series.



The Riemann zeta function can also be defined in terms of multiple integrals by,




and as a Mellin transform by,




or 
0<R<strike><1
, where 
frac(x)
 is the fractional part.




The Riemann zeta function can also be defined in the complex plane by the contour integral





for all 
z!=1
, where the co
ntour is illustrated above.




The Riemann zeta function is related to the Dirichlet 
lambda
 
function 
lambda(nu)
 and Dirichlet eta function
 
eta(nu)
 by





and







It is also related to the Liouville function
 
lambda(n)
 by





Furthermore,




where 
omega(n)
 is the number of distinct prime factors
 of 
n
.


Perry
🐴+1
New Posts  All Forums:Forum Nav:
  Return Home
  Back to Forum: Headphones (full-size)
Head-Fi.org › Forums › Equipment Forums › Headphones (full-size) › sennheiser vs akg. ( HD650 or DT 990 or AKG Q701 or AKG 702 or AKG and any other AKG or headphones)